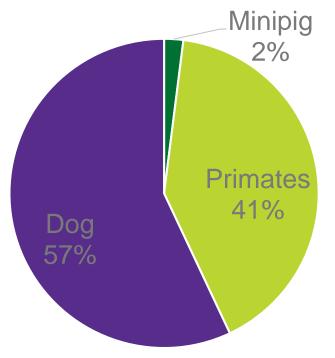
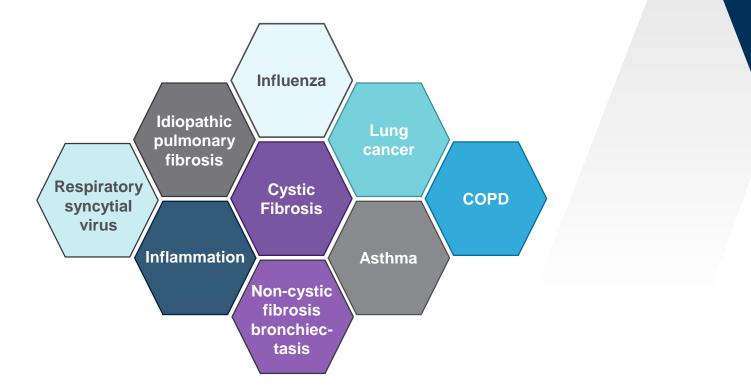

Inhalation Administration to Mini-Pigs

Dr. Simon Moore, BSc (Hons), PhD, MRSC

Global Lead of Inhalation Sciences and Engineering

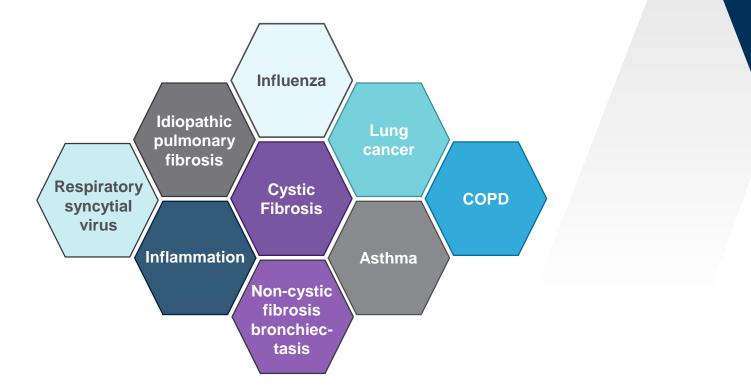


Large animal species selection – non-inhaled Toxicology Studies by Species (Last 5 Yrs.)

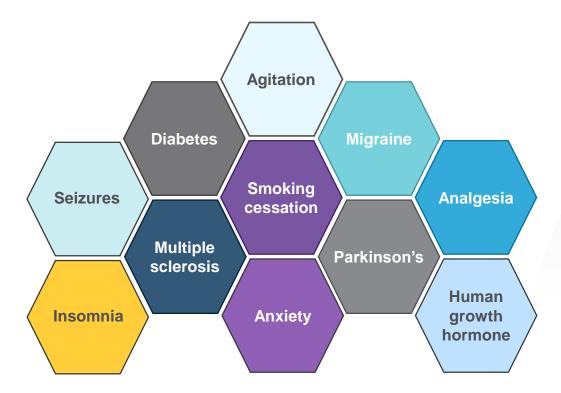


Large animal species selection – Inhalation specific Inhalation Studies by Species (Last 5 Yrs.)

Respiratory Therapies


Species selection

- Scientific
 - · Background data of the respiratory tract
 - UK
 - "No other species is suitable or it is not practicable to obtain animals of another suitable species"
 - EU similar ethical approach to the UK
 - US
 - Most relevant species
- Legalisation
 - UK
 - Second species justification irrespective if they have capability
 - Animal (Scientific Procedures) act is not extended to minipigs or pigs
 - Ethical influence



Respiratory Therapies

Systemic Therapies

Case Study:

Inhalation methodology success and cardiovascular and respiratory effects of β2-adrenergic agonist

Animal Transfer

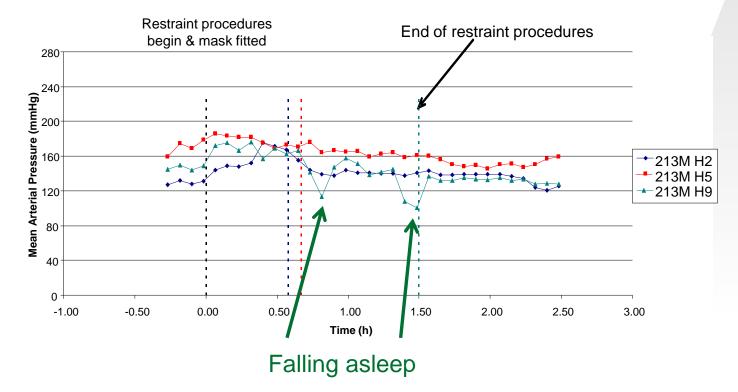
Whole-Body Exposure

- ► Up to 4 minipigs per chamber
- >12 air changes/hr
- Rubber mat over a Stainless Steel grating floor
- Clear retaining shield when opening and closing the chamber door

- Recommend a total of 10 consecutive days
- ► Day 1 no mask
- ► Animals prefer to stand, unlike dogs

- ► Days 2 to 4 mask attachment with air
- ► Animals prefer to stand

- ► Day >5
- Animals prefer to sit, lie and/or be stroked
- Edible treat



Restraint Training Example

Day	Total Time of Restraint (minutes)	Mask Fitted Time (minutes)	Introduction of Air Flow Through Mask
1	15	0	NO
2	30	15	YES
3	30	30	YES
4	40	40	YES
5 - 8	60	60	YES
9 - 10	90	90	YES

- Increasing duration of total time of restraint and mask time
- ► Airflow per animal between 5 and 7 L/min

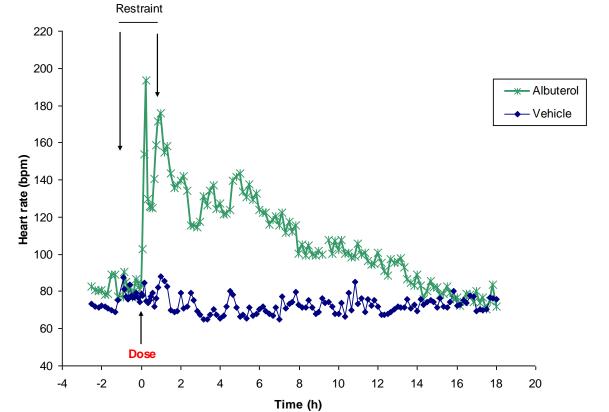
Inhalation dosing

- Assess cardiovascular and respiratory effects of β2-adrenergic agonist, Albuterol (Salbutamol)
- Single 15 mins inhalation exposure
- Telemetered minipigs (approximately 20 to 24 kg)
- Arterial BP, HR and ECG Lead II (PR and QT intervals)
- Target inhaled dose of 0.35 mg/kg based on Covance equivalent dog data¹

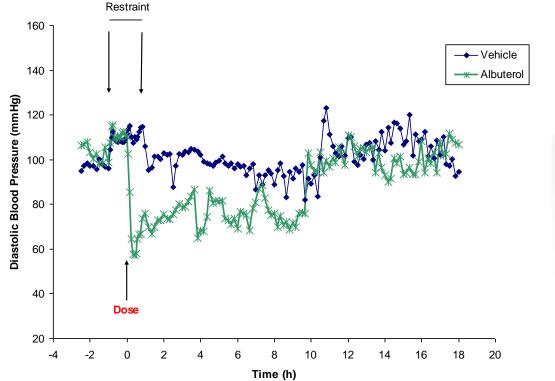


¹ Miyamoto, M. et al (2009). *Journal of Pharmacological and Toxicological Methods*, Vol. 60, Issue 2, Sept.-Oct., 252-253

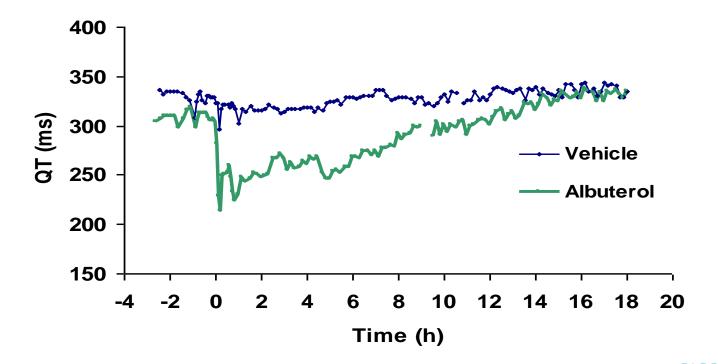
Inhalation dosing

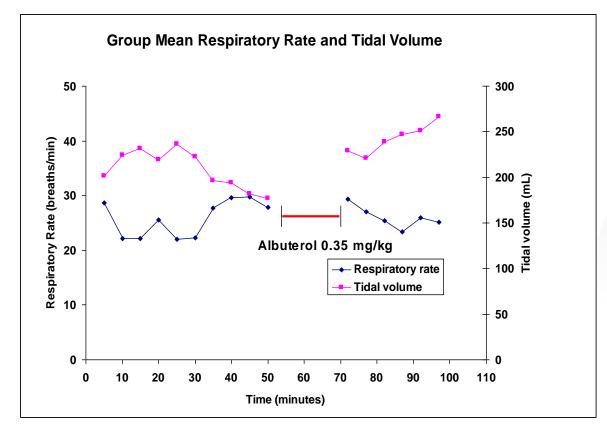

- Pari LC Sprint nebulizer
- ▶ 50 mg/mL solution in water
- ► Water vehicle
- ► Aerosol Conc = 83.3 µg/L
- ► MMAD = 1.7 µms
- Bide RMV equation¹
- Achieved inhalable dose = 0.35 mg/kg

¹ Bide, R.W. et al (2000).; *J. App. Tox.*, <u>20,</u> 273-290


Heart rate

Diastolic arterial BP


 Systolic arterial BP was similar



ECG lead II QT interval

QT similar to HR

Respiratory data

Respiratory Minute Volume data

Respiratory Minute Volume data

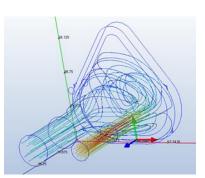
- Difference in RMV based on known algorithms
 - No mini-pig data used
- Recommend RMV recording during study until a revised algorithm

Mean Bodyweight (kg)	Approx. respiratory minute volume pre-dose (L/min)	Alexander et al (L/min) ¹	Bide et al (L/min)²	McMahon et al (L/min) ³
22.2	4.5	8.5	6.1	3.1

¹ Alexander D.J. et al (2008). *Inhal. Tox.*, <u>20</u>, 1179-1189.
² Bide, R.W. et al (2000).; *J. App. Tox.*, <u>20</u>, 273-290.
³ McMahon T.A. et al (1977). Species Differences in Aerosol Deposition. Inhaled Particles IV (edited by Walton, W.H.), Part 1: 23-32.

Conclusions

- Demonstrated effective habituation
- Procedures well tolerated for up to 90 mins
- Demonstrated the sensitivity to cardiovascular and respiratory effects of the β2-agonist
 - With HR, BP and ECG responses similar in magnitude to those of the dog.
- Mean RMV was 4.5 L/min compared with up to 8.5 L/min for known algorithms


Case Study:

Assess maximum exposure duration, lactose delivery and Respiratory minute volume assessment

Mask Design and Sizes

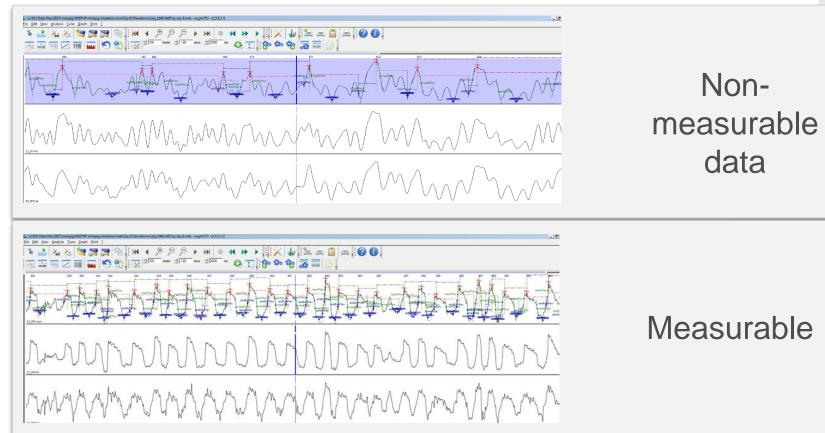
- AutoCAD software merges 3D scanned images
- Computational fluid dynamics
- Industrial 3d ProJet MJP2500 printer
 - Stereolithography
 - 32 micron resolution
- Better mask fitting designs for large animals
 - "Personalised" mask fitting
 - Shape and depth
- Improved animal welfare
- Entry and exit ports
 - Ensures no CO₂ accumulation
- Silicone malleable seal
- Bench top assessment

Restraint Training Regime

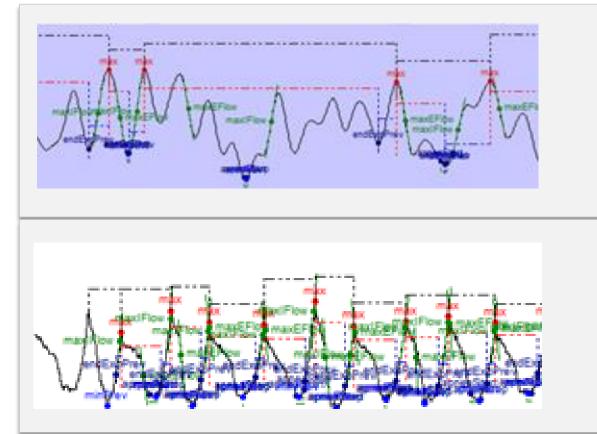
Day	Total Time of Restraint (minutes)		
	Slow	Fast	
1	Harness only	Harness only	
2-4	15	30	
5-7	30	60	
8-10	60	120	
11-13	120	240	
14-16	180		
17-19	240		

► No difference in behaviour

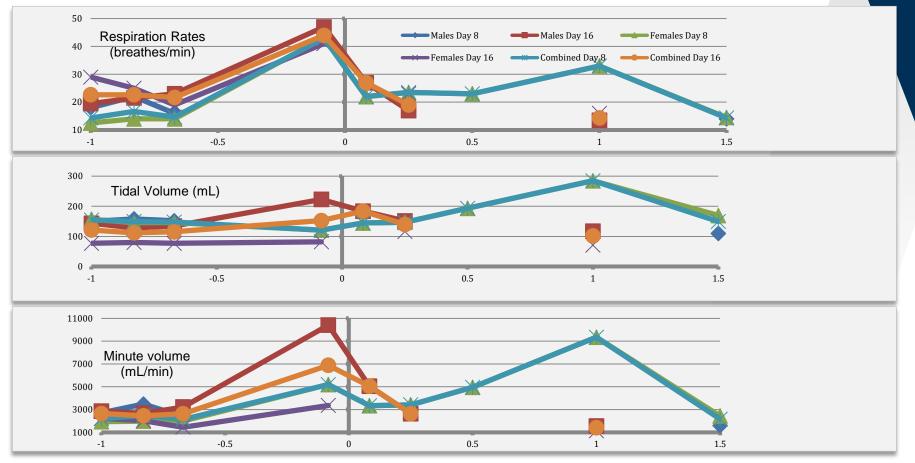
Airflow per animal 8 L/min as 25-30kg

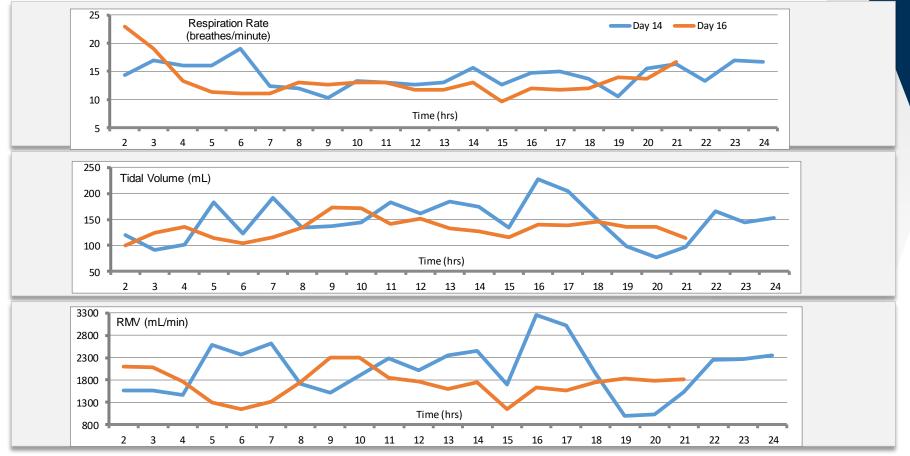

Lactose LH201 Delivery

- Animals dosed for 1 hr
- 4 hrs of restraint
- Lactose was accepted
- ► Aerosol conc = 0.323 mg/L
- ► MMAD = 4.5 µms
- 7 days was scheduled but stopped after 2 days as animals were compliant



Measurable vs Non-Measurable RMV Data


Ideal vs Non-Measurable RMV Data


Nonmeasurable data

Pre- and During Restraint

Post-Restraint

Respiration Data

Case Study	Mean Bodyweight (kg)	Time of Recording	Approx. Respiratory Minute Volume Pre-Dose (L/min)
β-agonist ¹	22.2	Pre-dose (but still restrained)	4.5
Exposure duration	27.5	During exposure	3.6

Recommend RMV recording during study until a revised algorithm

Animal Dosing Observations

- Learn quicker than dogs
- ► Wider variety of temperament
 - Sit or lie quietly
 - Stroked
 - But equally vocal on handling
- Relatively easy to handle and habituate
- Naturally quiet disposition
- No toilet control
- Not prone to vomiting
- Toys or not

Toxicokinetic Sampling

- Usual sampling site ear vein
- During exposure is challenging
- Animal response
 - Vocalisation
- Insufficient sample
 - 5min IAD probably first sample (unless microsampling)
- V-frame used for later samples

Conclusions

- Procedures well tolerated for up to 240 mins
- Dosing lactose is practical
- Mean RMV was confirmed that the values are considerably lower than known algorithms
- Caution when using JET RIP during pre and post dose may need manual data review
- TK sampling post exposure was successful but is a challenge during exposure

Test article requirement

- Larger body weight growth relative to dogs or primates
- The same or lower amount than dogs due to the indirect method of dose calculation
- Methods for reducing the requirements
 - Minimal airflows
 - · Experience with similar formulations
 - Minimizing compound requirement overages
 - Minimizing prelim based on experience
 - Compound recovery
 - Internally modified equipment

More Information

Contact: simon.moore@covance.com

CONNECTION ANALYSIS

Acknowledgements

- Somerset
 - Emily Ressegiue
 - Justine Damiano
 - Stuart Cracknell
- Huntingdon
 - Helen Palmer
 - Antony Grasiewicz
 - Stephen Jordan

Thank you

Covance is a business segment of LabCorp, a leading global life sciences company, which provides contract research services to the drug, medical device and diagnostics, crop protection and chemical industries. COVANCE is a registered trademark and the marketing name for Covance Inc. and its subsidiaries around the world.

www.covance.com

Copyright © 2020 Covance. All Rights Reserved.

Any Questions?

Covance is a business segment of LabCorp, a leading global life sciences company, which provides contract research services to the drug, medical device and diagnostics, crop protection and chemical industries. COVANCE is a registered trademark and the marketing name for Covance Inc. and its subsidiaries around the world.

www.covance.com