

Welcome to the webinar:

Drug metabolism in Göttingen Minipigs: Critical information for species selection in drug safety testing

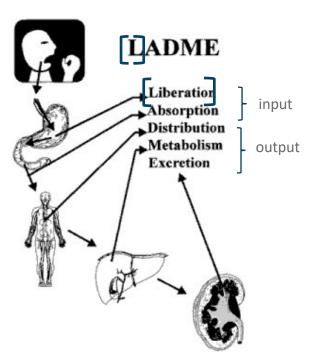
24 February 2021

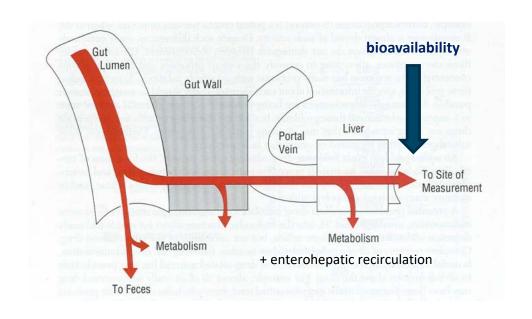
Guest speaker: Steven Van Cruchten | University of Antwerp, Belgium

- Many have signed up for this webinar from around the world and therefore all attendees are muted to avoid background noises, delays in sound, echoes etc.
- Please ask your questions in the questions/chat section and we will follow up in the Q&A session following the presentation.
- We encourage everyone to complete the survey after the webinar, so we can continue planning relevant, educational and insightful webinars.
- Presentation slides and a recording of the webinar will be shared within 1-2 days via email.
- Certificates of attendance are available upon request.
 Please email events@minipigs.dk

Follow Ellegaard Göttingen Minipigs on social media:

Outline

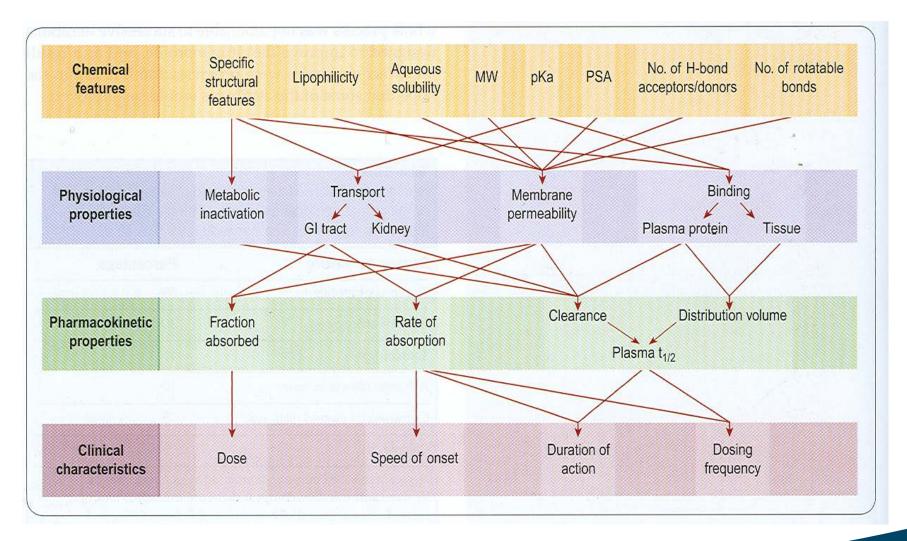

- ! Importance of ADME in vitro drug metabolism assays in species selection
- ! Metabolism of SMEs in adult population
- ! Metabolism of SMEs in paediatric population
 - ! Metabolism of SMEs in paediatric disease models
- ! Metabolism of ASOs in paediatric population



ADME - PK: some basics

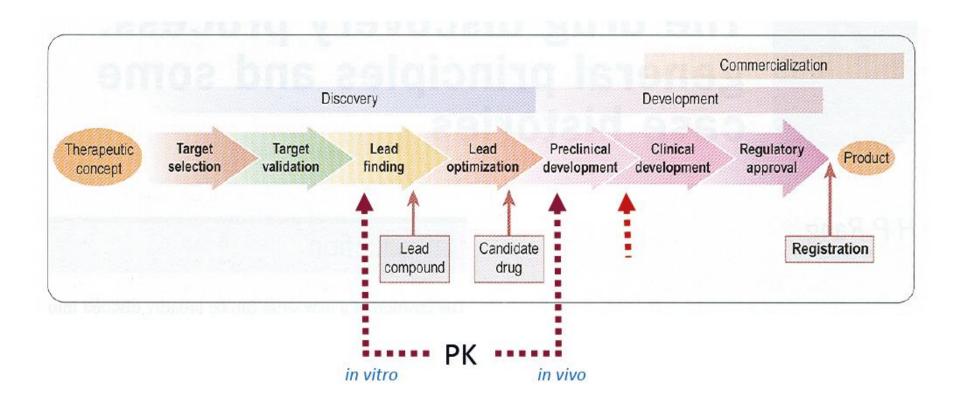
Pharmacokinetics (PK)

Relationships between the dosage regimen and the profile of the drug concentration in <u>blood</u> and <u>tissues</u> over time



Pharmacodynamics (PD)

Relationships between the drug concentration-time profile and therapeutic and adverse effects



Drug properties & PK characteristics

Positioning of PK in drug discovery/development

Importance of early PK evaluation

Early pharmacokinetic evaluation is pivotal

- Efficacy
- Safety
- Convenient use

Lead optimization

Lead identification

Reasons for failure in clinical development. (Data for 198 development compounds analysed by the Centre for Medicines Research; see Kennedy (1997))

Percentage	
39	
30	
11	
. 10	
5	
5	
	39 30 11 . 10 5

Note: Of the 198 compounds that failed in development, 77 were anti-infective drugs; if these are excluded, lack of clinical efficacy was the main cause of failure (49%), and pharmacokinetic failures were less common (7%).

"fail fast - fail cheap"

ADME – drug metabolism

CYP450 enzymes

Haem-containing mono-oxygenase enzymes that play an important role in the oxidative metabolism of endogenous substances, natural products and xenobiotics

CYP450	Relative amount in liver (%)	Selective inhibitors Characteristic				
1A2	~10	Furafylline	Inducible #			
2A6	~10		Polymorphic 🔻			
2B6	~1	Orphenadrine				
2C8	<1	Quercetin				
2C9	~20	Sulfaphenazole	Polymorphic 🔻			
2C19	~5		Polymorphic 🛠			
2D6	~5	Quinidine	Polymorphic 🔻			
2E1	~10	Pyridine	Inducible #			
3A4	~30	Azole antimycotics	Inducible #			
>55 CYP-genes sequences in human genome // four human CYP families (CYP1-4)						

* Interindividual variation

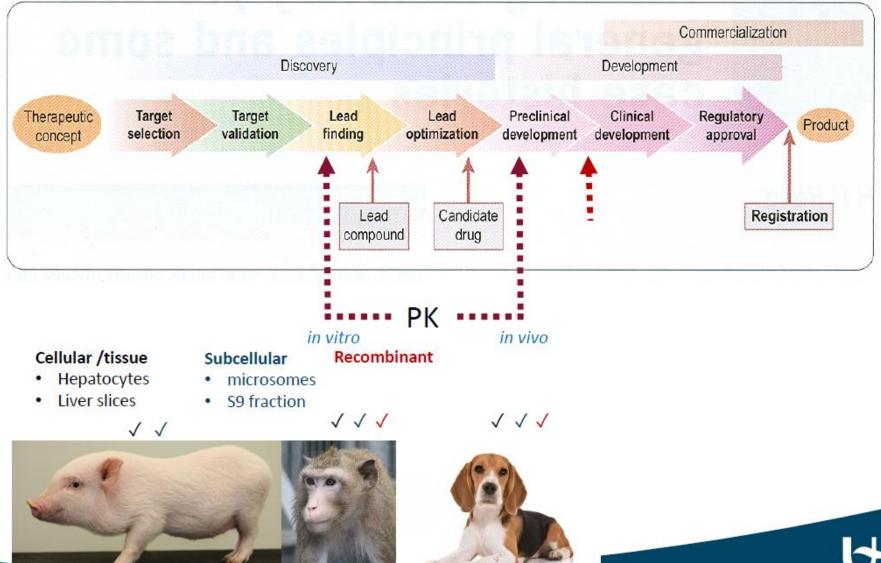
Drug

In vitro drug metabolism assays

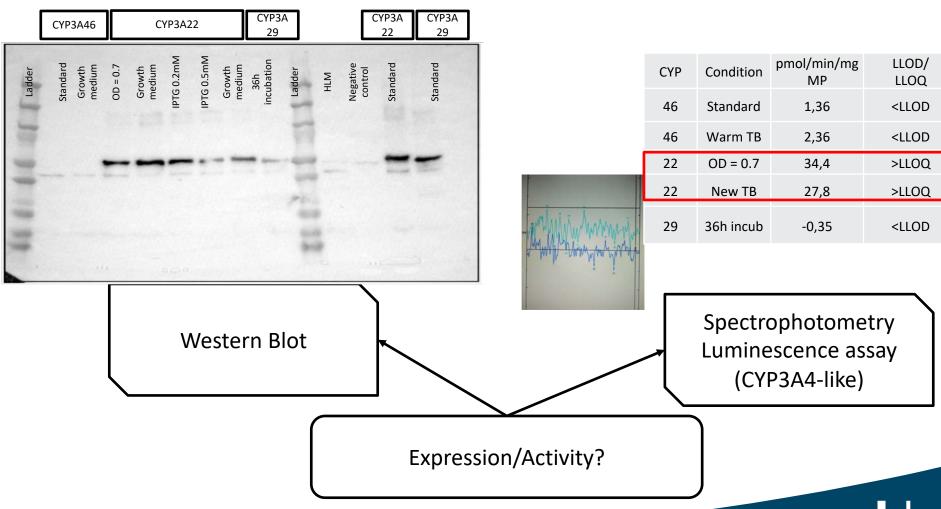
In vitro systems

- Animal derived
- Human derived

Animal studies


- PK PD
- TOX

Test system	Basic characteristics					
	fractioned from subcellular organelles by ultracentrifugation> smooth endoplasmic reticulum					
Liver microsomes (S9)	contains full complement of P450-enzymes					
	phase-II: addition of appropriate cofactors (conjugation enzymes)					
cDNA CYP's	individual enzymes produced in ER of host cell by gene expression (bacteria, yeast, mammalian cell,)					
CUMA CTP'S	most useful tool for HTS P450 screening (MS-detection, fluorescence)					
Permanent cell lines	cell lines poor and variable expression level - lack the complement of relevant enzymes					
	contain the full complement of phase-I and phase-II enzymes and co-factors					
Primary hepatocytes	induction of drug-metabolizing enzymes and hepatotoxicity can be assessed					
	higher metabolizing capacity> qualitative metabolite profiling					
Live slices	resemble most closely the in vivo situation> connection between individual cells					



In vitro drug metabolism assays: nonrodent species

Göttingen Minipig rCYP3A isoforms: ongoing activities

In practice:

Drug Candidate

In vitro methods.

Human derived material, recombinant enzymes and transporter proteins

In vitro methods.

Human and animal
hepatocytes.

Metabolite profiles.

In vivo methods.

Animal pharmacokinetics and preliminary metabolite identification. Humanized mouse.

Data

V_m/K_m, K_i,
(B-A)/(A-B);
CYP, FMO, ADH,
ALDH, AO, PAPS, UGT,
NAT enzymes.
Pgp, OCT and OAT
transporters.

Data¹⁴C-labeled drug.

Species comparison of metabolite profiles.

Covalent binding.

Data

AUC, C_{max}, F, CL, T_½, f_u.

Dose and gender dependency.

Species comparison.

Minipigs, dogs
or monkeys?

Dalgaard et al. Journal of Pharmacological and Toxicological Methods. 2015, 74:80-92.

Fig. 1. ADME methods and data produced early in the development phase of a new drug.

Conclusion in vitro drug metabolism: species comparison - selection

- ! Several in vitro drug metabolism assays for man, dog, minipig and nonhuman primates
- ! Recombinant enzymes for Göttingen Minipig still lacking, but under development
- ! Despite the presence of several in vitro drug metabolism assays for Göttingen Minipig, most companies do not include this nonrodent species in their testing battery

DMEs in adult population: species comparison

Hepatic CYPs – species comparison

Table 1Total liver content of CYP enzymes in humans, monkeys, pigs and dogs.

Species	Total liver content of CYP (nmol/mg protein)	References
Humans	$0.29 \pm 0.06 (n = 12)$ $0.307 \pm 0.16 (n = 18)$	Stevens et al. (1993) and Shimada et al. (1997)
Rhesus monkeys	$0.95 \pm 0.08 \; (n=6)$	Stevens et al. (1993)
Cynomolgus monkeys	$1.03 \pm 0.11 (n = 5)$	Shimada et al. (1997)
Minipigs	$0.81 \pm 0.15 (n = 9)$	Nebbia et al. (2003)
Pigs	$0.22 \pm 0.12 (n=3)$	Shimada et al. (1997),
	$0.46 \pm 0.07 (n = 12)$	Myers et al. (2001) and
Dogs	$0.39 \pm 0.04 \ (n=6)$	M T Skaanild and Friis (1999) Shimada et al. (1997)

Dalgaard et al. Journal of Pharmacological and Toxicological Methods. 2015, 74:80-92.

Table 3Comparison between human and pig or minipig CYP enzymes.

CYP1A2	The EROD activity of sexually-mature minipigs is 2–4 times higher than in males (Skaanild & Friis, 1999); (as opposed to humans); pig and human CYP1A very similar (Bogaards et al., 2000; Madden et al., 1998; Nebbia et al., 2003; Shimada et al., 1994; Skaanild & Friis, 1999). Induction by the same inducers across species (Behnia et al., 2000;
CI IDO A	Desille et al., 1999; Lu & Li, 2001; Monshouwer et al., 1998).
CYP2A, CYP2B	Major problems in extrapolations (Bogaards et al., 2000; Gillberg et al., 2006; Myers et al., 2001; Shimada et al., 1994; Skaanild & Friis, 1999).
CYP2C	Carries both 2C9 and 2C19 characteristics (share substrates)
	(Anzenbacher et al., 1998; Myers et al., 2001; Skaanild & Friis, 2007).
CYP2D	More caution needed: some CYP2D6 substrates are also substrates in
	pigs, but pig 2B seems to be responsible for this (Bogaards et al., 2000; Skaanild & Friis, 2002).
CYP2E1	High similarity between pig/minipig and human, some caution in
	extrapolation (Bogaards et al., 2000; Skaanild & Friis, 1999).
CYP3A	Similar to human and more than one CYP3A. Inducible by rifampin, but not by dexamethasone (Hosagrahara et al., 1999; Bogaards et al., 2000; Desille et al., 1999; Madden et al., 1998; Skaanild & Friis, 1999).

Dalgaard et al. Journal of Pharmacological and Toxicological Methods. 2015, 74:80-92.

CYP activity in man and nonrodents

Table 2CYP activity ratios in monkeys, minipigs and dogs relative to humans.

Substrate	Human CYP	T	Turpeinen et al. 2007			Sharer et al. 1995		
		Cynomolgus monkey	Göttingen minipig	Beagle dog	Cynomolgus monkey	Rhesus monkey	Beagle dog	
Ethoxyresorufin-O-deethylase ^{a, b}	1A2	10	1	6	11	14	2	
Coumarin 7-hydroxylase ^{a, b}	2A6	5	1	0.2	2	1	0.2	
Chlorzoxazone 6-hydroxylase ^a	2E1	1	0.5	0.5	NA	NA	NA	
NDMA N-demethylase ^b	2E1	NA	NA	NA	1	1	1	
Tolbutamide 4-hydroxylase ^{a, b}	2C9	0,5	0.4	0.0	0.6	0,5	0.0	
Omeprazole 5-hydroxylase ^a	2C19	2	0,2	0.0	NA	NA	NA	
S-mephenytoin 4'-hydroxylase ^b	2C19	NA	NA	NA	2	i	0.3	
Dextromethorphan O-demethylase ^a	2D6	2	5	0.4	NA	NA	NA	
Bufuralol 1'-hydroxylase ^b	2D6	NA	NA	NA	16	16	1	
Midazolam 1'-hydroxylase ^a	3A4	1	1	1	4	3	3	
Erythromycin N-demethylase ^b	3A4	NA	NA	NA	19	13	6	
Omeprazole sulphoxidationa	3A4	1	0,2	0.1	NA	NA	NA	

^aTurpeinen et al. (2007); ^bSharer et al. (1995).

CYP activity ratios (CYP_{animal}/CYP_{human}) with probe substrates. The colours - green, - yellow and - red indicate that there are minor (<5 and >0.2), medium (<10 and >5 or <0.2 and >0.1) or major differences (>10 or <0.1) in enzyme activity, respectively, in animals compared with humans. A fivefold or higher activity in the animal species compared with the activity in humans might result in an insufficient exposure of the drug candidate in the animal species. Also an activity which is only 0.2 (1/5) or less than that in humans could result in an insufficient exposure of metabolites in the animal species.

Clearance of compounds - species

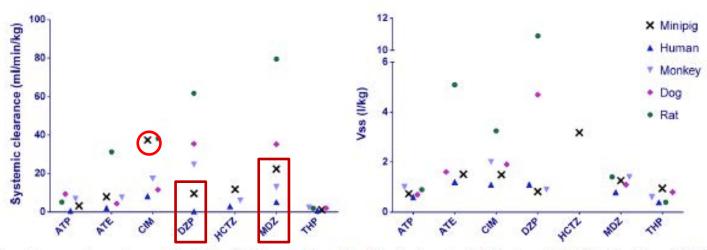
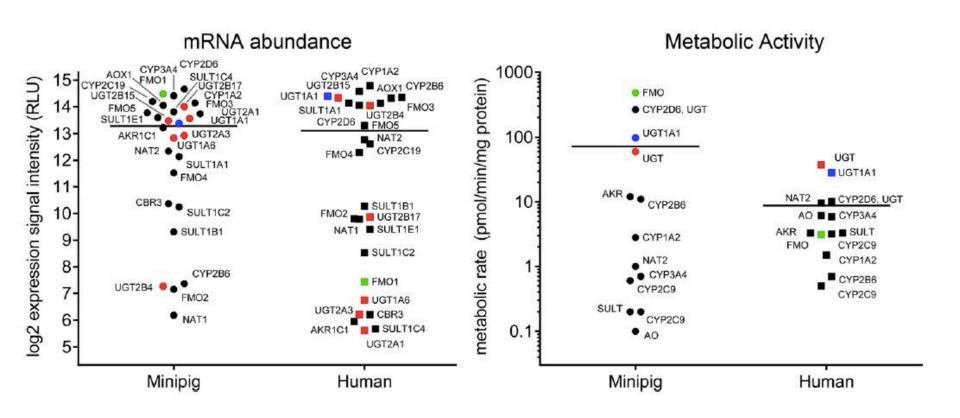
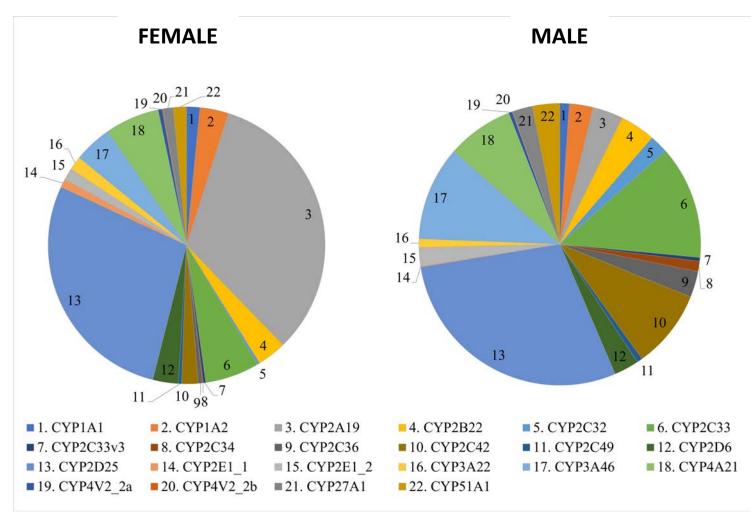



Fig. 3 Comparison of parameters values estimated by NCA analysis on the PK of antipyrine (ATP), atendol (ATE), cimetidine (CIM), diazepam (DZP), hydrochlorothiazide (HCTZ), midazolam (MDZ) and theophylline (THP) in minipigs to values extracted from the literature for human, monkey, dog and rat. All data are available in Supplementary Material I.

Lignet et al. Pharm Res. 2016, 33:2565-79.


mRNA abundance and activity data

Heckel et al. BMC Genomics. 2015, 16:932.

Protein abundance: gender differences

F > M : CYP1A1, CYP1A2, **CYP2A19**, CYP2E1 2, CYP3A22

Göttingen Minipig: ideal animal model?

СҮР	Rel. content in human liver (%)	Estim. fraction of drugs metabolized by indiv. CYP	Marker activity	Model system
1A2	12	4 %	caffeine	rat, rabbit, pig, minipig
2C9/10/19	20	11 %	diclofenac (2C9), (S)- mephenytoin (2C19)	monkey (Maccacus mulatta)
2D6	4	30 %	sparteine, debrisoquine, dextromethorphan	dog
2E1	6	2 %	chlorzoxazone	rat, rabbit, pig, minipig
3A4	30	52 %	nifedipine, erytromycin, alprazolam, dextrometorphan	pig, minipig

Zuber et al. J. Cell. Mol. Med. 2002, 6(2):189-198.

Further considerations

- ! Take into account pseudogenes. More prominent in dog than in Göttingen Minipig.
- ! Dogs no AOX, NAT1 ad NAT2 or CYP2C9-like enzymes => Göttingen Minipig better choice
- ! Pigs no PAPs
- ! Non-human primates not always a better reflection for man e.g. fosdevirine: cysteine conjugate metabolite linked to seizures
- ! Göttingen Minipig high glucuronidation and low sulphation compared to man

Species selection general tox studies

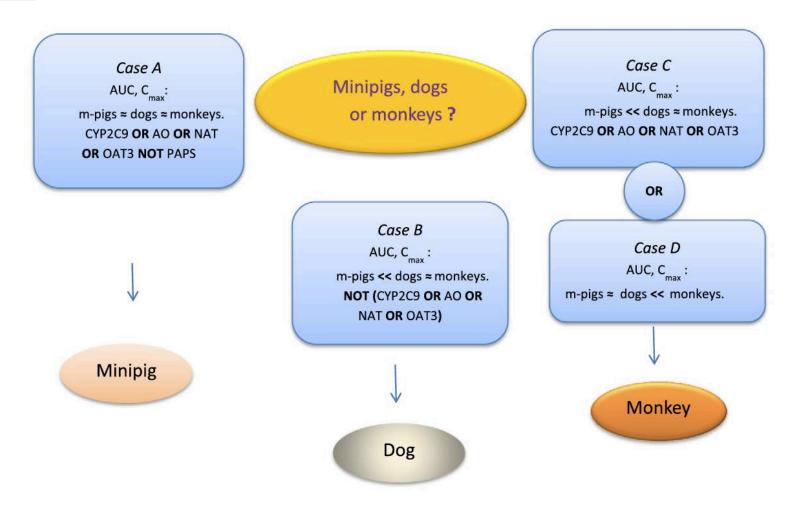


Fig. 2. Pharmacological relevant non-rodent species selection for toxicity studies.

Dalgaard et al. Journal of Pharmacological and Toxicological Methods. 2015, 74:80-92.

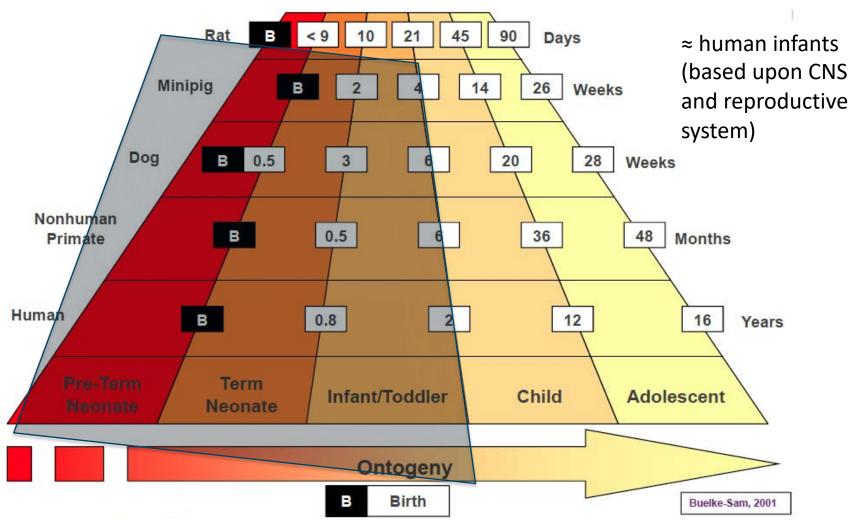
DMEs in paediatric/juvenile population: species comparison

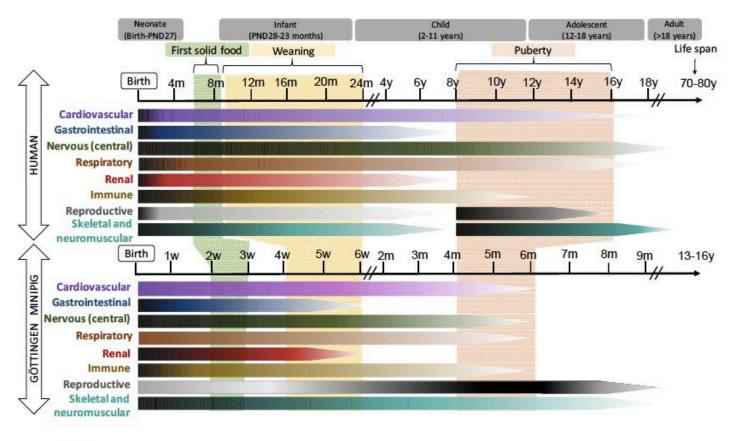
Paediatric drug development

- ! 20% of European population is agedless than 16 year
- ! Majority of medicines have **not** been tested in children
- ! **Differences** in drug safety profiles between mature and immature bodies
- ! January 2007: Paediatric Regulation No 1901/2006
 - → safe and efficient drugs for children

Children ≠ adults Neonate ≠ child

- ! Especially neonates and infants are of concern due to:
 - ! Prolonged gastric emptying time
 - ! Differences in gastric pH
 - ! High total water content
 - ! Less plasma protein binding
 - ! Decreased glomerular filtration rates
 - ! Immature drug metabolism and transport





Corresponding age groups

Corresponding age groups: organ systems

The Neonatal and Juvenile Pig in Pediatric Drug Discovery and Development

Miriam Ayuso 1,*, Laura Buyssens 10, Marina Stroe 1, Allan Valenzuela 10, Karel Allegaert 2,3,40, Anne Smits 3,5, Pieter Annaert 20, Antonius Mulder 6,7, Sebastien Carpentier 8, Chris Van Ginneken 1 and Steven Van Cruchten 1,80

Corresponding age groups: organ systems

Species Comparison of Postnatal Bone Growth and Development

Tracey Zoetis, Melissa S. Tassinari, Cedo Bagi, Karen Walthall, and Mark E. Hurtt2,*

¹Milestone Biomedical Associates, Frederick, Maryland ²Pfizer Global Research and Development, Groton, Connecticut

Postnatal Anatomical and Functional Development of the Heart: A Species Comparison

Kok Wah Hew1* and Kit A. Keller2

¹Purdue Pharma L.P., Nonclinical Drug Safety Evaluation, Ardsley, New York ²Consultant, Washington DC

Landmarks in the Development of the Female Reproductive System

David A. Beckman1* and Maureen Feuston2

¹Novartis Pharmaceuticals Corporation, Preclinical Safety, Toxicology, East Hanover, New Jersey ²Sanofi-Synthelabo Research, Toxicology, Malvern, Pennsylvania

Development and Maturation of the Male Reproductive System

M. Sue Marty, Robert E. Chapin, Louise G. Parks, and Bjorn A. Thorsrud

¹Dow Chemical Company, Midland, Michigan ²Pfizer Global Research & Development, Groton, Connecticut Merck & Company, West Point, Pennsylvania ⁴Springborn Laboratories, Inc., Spencerville, Ohio

Species Comparison of Anatomical and Functional Renal Development

Tracey Zoetis1 and Mark E. Hurtt2* ¹Milestone Biomedical Associates, Frederick, Maryland ²Pfizer Global Research & Development, Groton, Connecticut

Species Comparison of Anatomical and Functional Immune System Development

Michael P. Holsapple, 1* Lori J. West, 2 and Kenneth S. Landreth 3

¹ILSI Health and Environmental Sciences Institute (HESI), Washington, DC ²The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada ³Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia

Species Comparison of Lung Development

Tracev Zoetis1 and Mark E. Hurtt2*

¹Milestone Biomedical Associates, Frederick, Maryland ²Pfizer Global Research & Development, Groton, Connecticut

Species Comparison of Postnatal CNS Development: **Functional Measures**

Sandra L. Wood, 18 Bruce K. Beyer, 2 and Gregg D. Cappon 3

¹Merck Research Laboratories, West Point, Pennsylvania ²Sanofi-Synthelabo Research, Malvern, Pennsylvania ³Pfizer Global Research and Development, Groton, Connecticut

Postnatal Growth and Morphological Development of the Brain: A Species Comparison

Rebecca E. Watson, John M. DeSesso, Mark E. Hurtt, and Gregg D. Cappon2* ¹Mitretek Systems, Falls Church, Virginia ²Pfizer Global Research and Development, Groton, Connecticut

Postnatal Development of the Gastrointestinal System: A Species Comparison

> Karen Walthall, Gregg D. Cappon, Mark E. Hurtt2* and Tracey Zoetis3 ¹Aclairo Pharmaceutical Development Group, Inc., Sterling, Virginia ²Pfizer Global Research and Development, Groton, Connecticut ³SciLucent, LLC, Herndon, Virginia

Corresponding age groups: organ systems

Consideration of the Development of the Gastrointestinal Tract in the Choice of Species for Regulatory Juvenile **Studies**

Noel John Downes D

Species Differences in Renal Development and Associated **Developmental Nephrotoxicity**

Kendall S. Frazier 0

Species Comparison of Postnatal Development of the Female Reproductive System

Susan B. Laffan 6x1, Lorraine M. Posobiec1, Jenny E. Uhl1, and Justin D. Vidal2

Pre- and Postnatal Lung Development: An Updated Species Comparison

Geertje Lewin 6 *1 and Mark E. Hurtt²

Comparative Aspects of Pre- and Postnatal Development of the Male Reproductive System

Catherine A. Picut*1, Mary K. Ziejewski 62, and D. Stanislaus2

Pre- and Postnatal Development of the Eye: A Species Comparison

Steven Van Cruchten 0*1, Vanessa Vrolyk2, Marie-France Perron Lepage3, Marie Baudon3, Hélène Voute³, Sabine Schoofs⁴, Julius Haruna⁵, Marie-Odile Benoit-Biancamano². Benoît Ruot³, and Karel Allegaert^{6,7}

Prenatal and postnatal development of the mammalian ear

Nicola Powles-Glover¹

Mark Maconochie²

Ontogeny of DMEs and DTS

1521-0081/73/2/597-678\$35.00

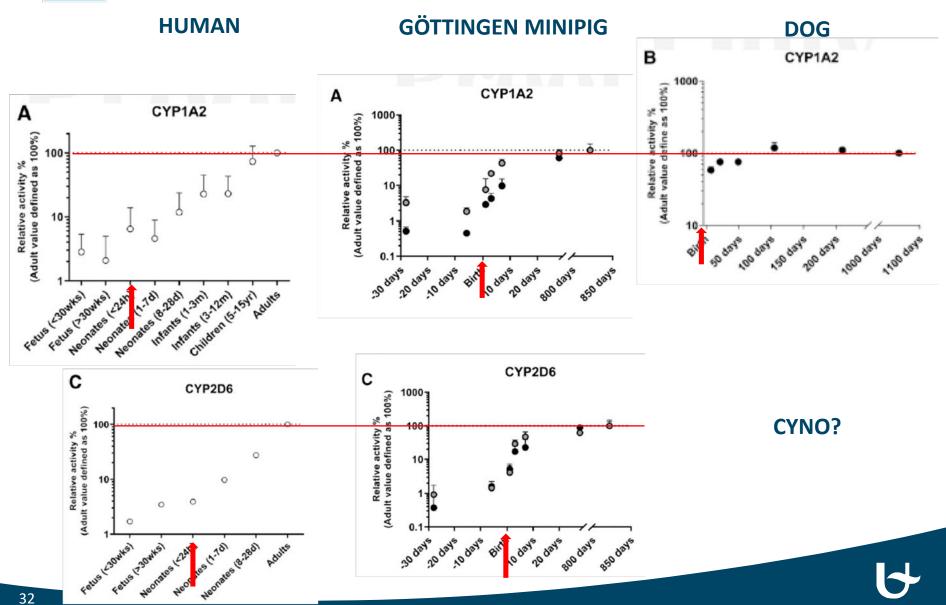
Pharmacological Reviews

Copyright © 2021 by The Author(s)

This is an open access article distributed under the CC BY-NC Attribution 4.0 International license.

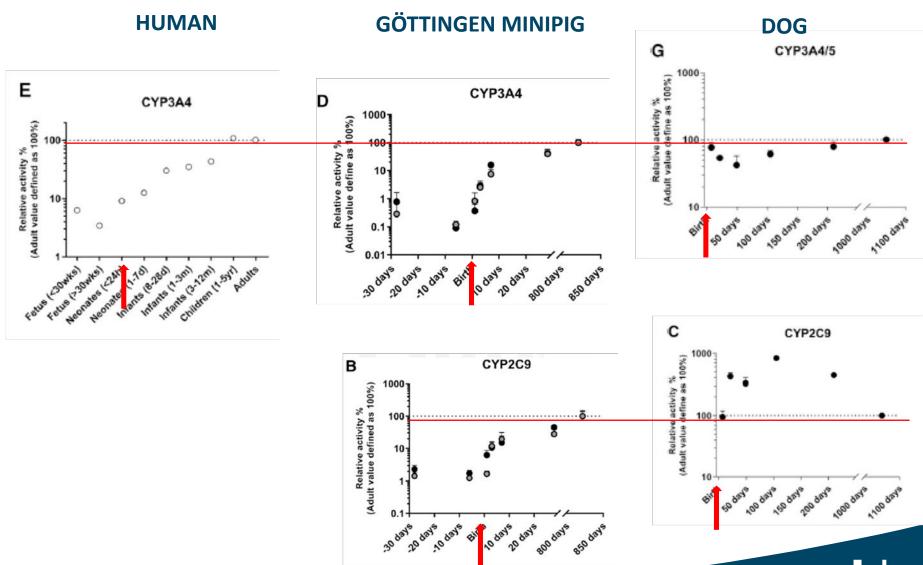
https://doi.org/10.1124/pharmrev.120.000071 Pharmacol Rev 73:597–678, April 2021

ASSOCIATE EDITOR: HYUNYOUNG JEONG

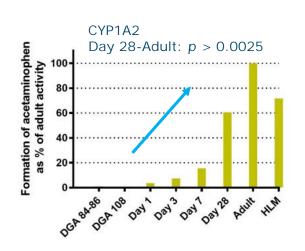

Ontogeny of Hepatic Transporters and Drug-Metabolizing Enzymes in Humans and in Nonclinical Species^S

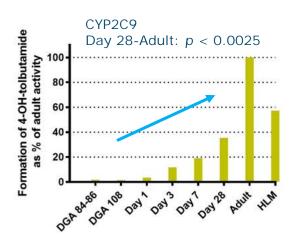
B. D. van Groen, DJ. Nicolaï, A. C. Kuik, S. Van Cruchten, E. van Peer, A. Smits, S. Schmidt, S. N. de Wildt, K. Allegaert, L. De Schaepdrijver, P. Annaert, and J. Badée

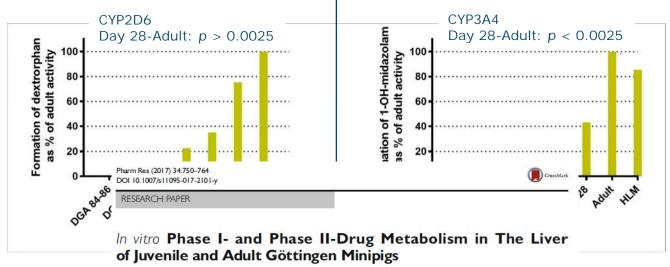
Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo salnvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)

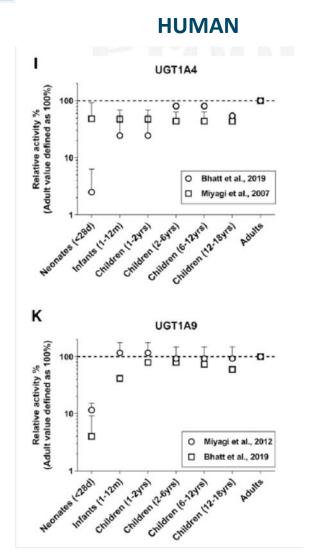


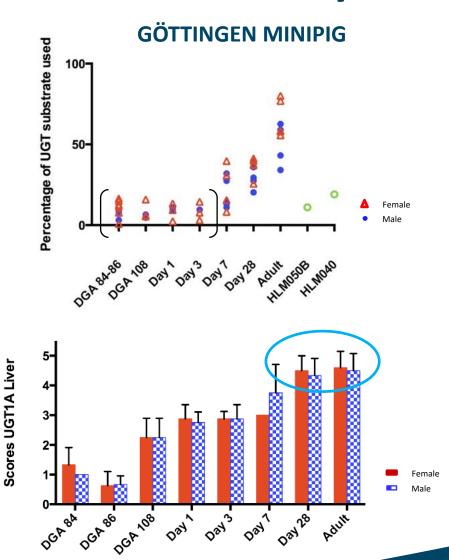
Ontogeny profiles of CYP450 activity


Ontogeny profiles of CYP450 activity




Onset of CYP activity in Göttingen Minipig




Els Van Peer 1 • Frank Jacobs 2 • Jan Snoeys 2 • Jos Van Houdt 2 • Ils Pijpers 2 • Christophe Casteleyn 1 • Chris Van Ginneken . Steven Van Cruchten

Ontogeny profiles of UGT activity

CrossMark

Basic & Clinical Pharmacology & Toxicology, 2014, 114, 387-394

Organ data from the developing Göttingen minipig: first steps

towards a juvenile PBPK model Els Van Peer 6. Noel Downes 2. Christophe Casteleyn 1. Chris Van Ginneken 1.

Arie Weeren³ . Steven Van Cruchten¹

Journal of Pharmur clogical and Transcological Methods 62 (2010) 196-320

Contents lists available at ScienceDirect

Journal of Pharmacological and Toxicological Methods Journal homepage: www.elsevier.com/locate/jpharmtox

The utility of the minipig as an animal model in regulatory toxicology Gerd Bode **, Peter Clausing b, Frederic Gervais c, Jeanet Loegsted d, Jörg Luft c, Vicente Nogues C, Lennifer Sime 8

vicence Nogues", Jenniter Sims" and under the auspices of the Steering Group of the RETHINK Project

Age-related Differences in CYP3A Abundance and Activity in

Els Van Peer³, Lies De Bock², Koen Boussery³, Jan Van Boeslaer², Christophe Casteleyn³, Chris Van Gianeken³ and Steven Van Cruchten³ Steven Van Cruchten

Steven Van Cruchten

1 Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antweep, Wanjie, Belgium and ²Laboratory of Medical Biochemistry and Clinical Analysis, Department of Biocanalysis, Chem. University, Chem., Belgium Biochemistry and Clinical Analysis, Department of Biocanalysis, Chem.

Pharm Res (2016) 33:2565-2579

Characterization of Pharmacokinetics in the Göttingen Minipig DOI 10.1007/s11095-016-1982-5 with Reference Human Drugs: An In Vitro and In Vivo Approach

Poriane Lignet (a) - Eta Sherbetjian ¹ - Nicole Kratochwil ¹ - Russell Jone Pharm Res (2017) 34:750-764
Michael B. Otteneder ¹ - Thomas Singer ¹ - Noill Parmet ¹

nonane ugnet 🐸 • tva snervegan • Nacore Natodrina Michael B. Otteneder • Thomas Singer • Neil Parrott

In vitro Phase I. and Phase II-Drug Metabolism in The Liver of Juvenile and Adult Göttingen Minipigs

Els Van Peer I • Frank Jacobs 2 • Jan Snoeys 2 • Jos Van Houdt 2 • Ils Pijpers 2 • Christophe Casteleyn I • Chris Van Ginneken I • Steuen Van Churkten 1 Chris Van Ginneken

Steven Van Cruchten

Ontogeny of CYP3A and P-Glycoprotein in the Liver and the Small Intestine of the Göttingen Minipig: An Immunohistochemical Evaluation

Els Van Peer, Evy Verbucken, Moayad Saad, Christophe Casteleyn, Chris Van Ginneken and Steven Van Cruchten Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (Received 12 September 2013; Accepted 29 October 2013)

Doi: 10.1111/bcpt.12173

Conclusions SMEs

- ! Gene expression levels of major hepatic DMEs similar in Göttingen Minipig and man, but isoform-specific differences occur (e.g. UGT1A6, UGT2A1, UGT2A3, UGT2B17, FMO1, AKR1C1, CBR3, SULT1C4 and SULT1E1 higher mRNA expression in Göttingen Minipig)
- ! Ontogeny of CYPs and UGTs similar pattern in juvenile Göttingen Minipigs compared to the paediatric populations

PK of SMEs in paediatric disease models

Published: 13 May 2020 doi: 10.3389/fphar.2020.00587

A Physiology-Based Pharmacokinetic Framework to Support Drug Development and Dose Precision During Therapeutic Hypothermia in Neonates

Anne Smits 1,2*, Pieter Annaert3, Steven Van Cruchten4 and Karel Allegaert2,5,6

*Noonatal Interester Care Unit, University Hospitals Leuven, Leuven, Belgium, *Department of Development and Regeneration, KU Leuven, Leuven, Belgium, *Drug Deliver and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium, *Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilright, Belgium, *Department of Pharmacoutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium, *Department of Clinical Pharmaco, Erasmus, Mc-Sophilo Khlerine's Hospital, Potteration, Netherlands

OPEN ACCESS

- ! Effect of cooling therapy
- ! PK of midazolam, phenobarbital, topiramate and fentanyl

PBPK model

Sangild et al. J ANIM SCI 2013, 91:4713-4729

PK of ASOs in juvenile Göttingen Minipigs

TOXICOLOGICAL SCIENCES, 157(1), 2017, 112-128

doi: 10.1093/toxsci/kfx025 Advance Access Publication Date: January 25, 2017

The Minipig is a Suitable Non-Rodent Model in the Safety Assessment of Single Stranded Oligonucleotides

Annamaria Braendli-Baiocco, *,1,2 Matthias Festag, *,1 Kamille Dumong Erichsen, † Robert Persson, † Michael J. Mihatsch, † Niels Fisker, † Juergen Funk, * Susanne Mohr,* Rainer Constien,§ Corinne Ploix,* Kevin Brady,* Marco Berrera,* Bernd Altmann,* Barbara Lenz,* Mudher Albassam, Georg Schmitt,* Thomas Weiser,* Franz Schuler,* Thomas Singer,* and Yann Tessier†

Gene expression profiling of key nucleases in the juvenile Göttingen minipig

Allan Paulo Valenzuela 1,*, Laura Buyssens 1, Chloé Bars 1, Miriam Ayuso 1, Chris Van Ginneken 1, Neil Parrott², Yann Tessier², Georg Schmitt², Paul Barrow², Steven Van Cruchten¹

1 Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium ² Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124 CH-4070 Basel, Switzerland

https://doi.org/10.1016/j.reprotox.2019.07.058

No overt toxicity

GENERAL CONCLUSIONS

- ! Drug metabolism of small molecule drugs in neonatal and juvenile Göttingen Minipigs paediatric population
- ! Also a valuable model for new modalities such as ASOs
- ! Opportunities for assessment of covariates in juvenile Göttingen Minipig disease models that cannot be addressed in a clinical setting

ACKNOWLEDGEMENTS

Steven.VanCruchten@uantwerpen.be

